

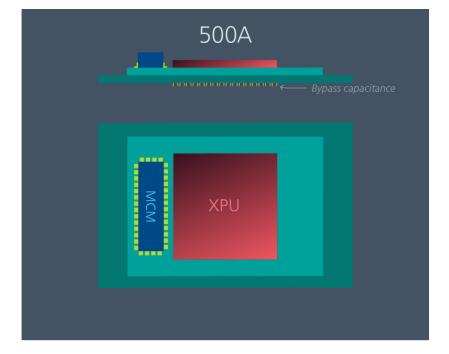
ORMANCE • INNOVATION • EXPERTISE • EASE-OF-U RK • PROVEN • EFFICIENCY • QUALIFIED • COMPETI PORTUNITY • COMPONENTS • FLEXIBILITY • PERFO RABLE • EXPERTISE • DENSITY TIME • VOLUME • RE SITY • OUALIFIED • COMPETITIVE • SOLUTIONS • INT

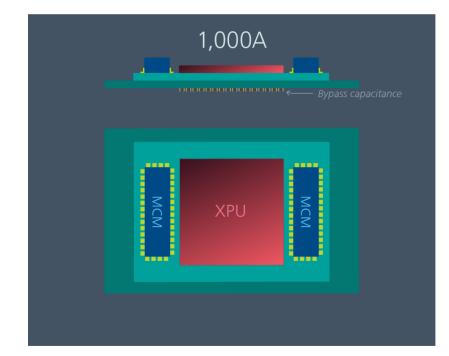
The Future of Power Integrity DesignCon 2019

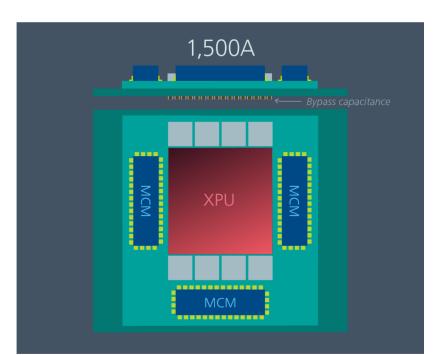
VICOR

Present: Lateral Power Delivery from XPU sides

> Current Multipliers ("MCMs")


- Current density: 1.2A/mm²
- Interconnect resistance: $100\mu\Omega$ per XPU side


> Lateral power delivery issues:


- PDN loss
- PDN impedance

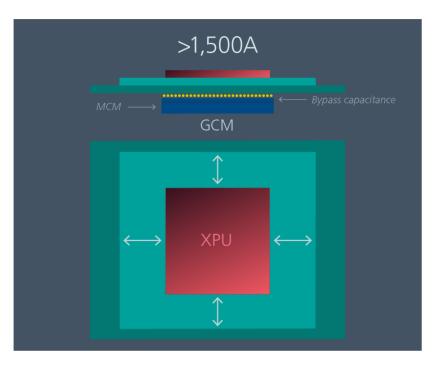
> Access to XPU constrained by PDN

- HBM
- HDI

VICOR

Future: Vertical Power Delivery accelerates XPU performance

> Geared Current Multiplier ("GCM")


- X&Y array of cells fits within the XPU footprint
- Low interconnect resistance (e.g., $10\mu\Omega$)
- Terminal pitch matched to XPU (e.g., 1mm)
- XPU perimeter unobstructed

> Power integrity

- Bypass capacitors re-located within the GCM
- Low GCM output inductance (e.g., 3pH)
- Low noise ZCS/ZVS current multiplication

> Easier to cool

- Vertical PDN loss much lower than Lateral PDN
- Relatively low GCM heat load
- GCM components: ceramics and LV FETs
- GCM cells capable of high temp operation

