可靠性数据
平均故障间隔时间(MTBF)
由于工作温度是确定整体模块可靠性的最重要因素之一,重要的是用户的系统设计可以有效地将热从基板传递到系统环境。由于温度和故障率是指数关系,基板温度只降低10℃,就可致MTBF的明显增加。由于专利的零电压/零电流开关拓扑结构,相比那些更传统的拓扑结构,Vicor转换器效率更高。高效率意味着更小的尺寸和更低的温升。为了最大限度地减少热阻抗,所有主要功率耗散元件都直接安装在基板上。
下面代表的是根据MIL-HDBK-217F计算的MTBF值。如果你需要有关特定型号的信息,请根据型号、预计基板温度和工作环境与Vicor联系,以获得需要的报告。
MTBF in 1000 Hours |
|||||
Part Number | Baseplate Temperature | G.B. | G.F. | A.I.C. | N.S. |
MI-J71-MY | 25°C | 3,782 | 1,891 | 1,135 | 1,116 |
50°C | 2,307 | 1,154 | 692 | 681 | |
65°C | 1,778 | 889 | 533 | 524 | |
MI-274-MW | 25°C | 3,830 | 1,878 | 1,149 | 1,130 |
50°C | 2,336 | 1,915 | 701 | 689 | |
65°C | 1,800 | 900 | 540 | 531 | |
V24C3V3M75BL Micro Module |
25°C | 6,235 | 3,117 | 1,870 | 1,839 |
50°C | 3,803 | 1,902 | 1,141 | 1,122 | |
65°C | 2,930 | 1,465 | 879 | 864 | |
V24B5M200BL Mini Module |
25°C | 4,205 | 2,102 | 1,201 | 1,240 |
50°C | 2,565 | 1,282 | 769 | 757 | |
65°C | 1,976 | 988 | 593 | 583 | |
V24A12M400BL Maxi Module |
25°C | 3,428 | 1,714 | 1,028 | 845 |
50°C | 2,091 | 1,282 | 627 | 617 | |
65°C | 1,611 | 806 | 483 | 475 |
环境认证
完全封装的Vicor Maxi、Mini、Micro和MI系列模块采用专有的旋转填充工艺,保证完整、无空隙的封装,使之适合于恶劣环境。除了提供机械强度,密封还是导热的,以消除热点并有助于热量传递到基板上。模块可在温度低至-55℃工作并在-65℃保存。
为了验证Vicor的H及M级Maxi、Mini和Micro以及MI系列模块恶劣环境的适用性,这些产品都经过MIL-STD-810、MIL-STD-202的环境测试。下面列出的这些测试是在独立实验室进行的。附加环境测试可以根据具体客户的要求完成。
Environment
MI Family Module
Maxi, Mini & Micro Module
Altitude
- MIL-STD-810F
Method 500.4
Procedure I & II
40,000 ft.and 70,000 ft. Operational
- MIL-STD-810D
Method 500.2
Procedure III
explosive decompression (40 K ft.) - MIL-STD-810D
Method 500.2
Procedure II
40,000 ft.
1000 – 1500 ft./min. to
70,000 ft., unit functioning
Explosive Atmosphere
- MIL-STD-810F
Method 511.4
Procedure I
Operational
- MIL-STD-810C
Method 511.1
Procedure I
Vibration
- MIL-STD-810F
Method 514.5
Procedure I
category 14
sine and random vibration
per Table 514.5C
for helicopter AH-6J main rotor
with overall level of 5.6 g rms
for 4 hours per axis - MIL-STD-810F
Method 514.5C
general minimum
integrity curve
per Figure 514.5C-17
with overall level of 7.7 g rms
for 1 hr per axis
- MIL-STD-810D
Method 514.3
Procedure I
category 6
helicopter, 20 g - MIL-STD-810D
Method 514.3
random:
10 – 300 Hz @ 0.02 g2/Hz
2000 Hz @ 0.002 g2/Hz
3.9 total g rms
3 hrs/axis
sine:
30 Hz @ 20 g
60 Hz @ 10 g
90 Hz @ 6.6 g
120 Hz @ 5.0 g
16.0 total g rms
3 axes - MIL-STD-810E
Method 514.4
Table 514.4-VII
±6 db/octave 7.7 g rms
1hr/axis
Shock
- MIL-STD-810F
Method 516.5
Procedure I
functional shock, 40 g - MIL-STD-202F
Method 213B
60 g, 9 ms half sine - MIL-STD-202F
Method 213B
75 g, 11 ms saw tooth shock
- MIL-STD-810D
Method 516.3
Procedure I
functional shock, 40 g - MIL-STD-202F
Method 213B
18 pulses, 60 g, 9 msec - MIL-STD-202F
Method 213B
75 g, 11 ms saw tooth shock - MIL-STD-202F
Method 207A
3 impacts / axis, 1, 3, 5 feet
Acceleration
- MIL-STD-810F
Method 513.5
Procedure II
Table 513.5-II
Operational
2 – 7 g
6 directions
- MIL-STD-810D
Method 513.3
Procedure II
Operational test
9 g for 1 minute
along 3 mutually
perpendicular axes
Humidity
- MIL-STD-810F
Method 507.4
95% Relative Humidity
- MIL-STD-810F
Method 507.4
95% Relative Humidity
Solder Test
- MIL-STD-202G
Method 208H
8 hr aging
- MIL-STD-202G
Method 208H
8 hr aging
Fungus
- MIL-STD-810F
Method 508.5
- MIL-STD-810C
Method 508.1
Salt Fog
- MIL-STD-810F
Method 509.4
- MIL-STD-810C
Method 509.1